Get yourself trained on Learn PyTorch for with this Online Training Learn PyTorch for Natural Language Processing.
Online Training Learn PyTorch for Natural Language Processing
PyTorch: written in Python, is grabbing the attention of all data science professionals due to its ease of use over other libraries and its use of dynamic computation graphs. PyTorch is a Deep Learning framework that is a boon for researchers and data scientists.This course takes a practical approach and is filled with real-world examples to help you create your own application using PyTorch! Learn the most commonly used Deep Learning models, techniques, and algorithms through PyTorch code. Get yourself acquainted with the advanced concepts such as Transfer Learning, Natural Language Processing and implementation of Generative Adversarial Networks. Moving further you will build real-world NLP applications such as Sentiment Analyzer & advanced Neural Translation Machine.Contents and OverviewThis training program includes 2 complete courses, carefully chosen to give you the most comprehensive training possible.The first course, PyTorch Deep Learning in 7 Days is for those who are in a hurry to get started with PyTorch. You will be introduced to the most commonly used Deep Learning models, techniques, and algorithms through PyTorch code. This course is an attempt to break the myth that Deep Learning is complicated and show you that with the right choice of tools combined with a simple and intuitive explanation of core concepts, Deep Learning is as accessible as any other application development technologies out there. Its a journey from diving deep into the fundamentals to getting acquainted with the advanced concepts such as Transfer Learning, Natural Language Processing and implementation of Generative Adversarial Networks. By the end of the course, you will be able to build Deep Learning applications with PyTorch.The second course, Hands-On Natural Language Processing with Pytorch you will build two complete real-world NLP applications throughout the course. The first application is a Sentiment Analyzer that analyzes data to determine whether a review is positive or negative towards a particular movie. You will then create an advanced Neural Translation Machine that is a speech translation engine, using Sequence to Sequence models with the speed and flexibility of PyTorch to translate given text into different languages. By the end of the course, you will have the skills to build your own real-world NLP models using PyTorch’s Deep Learning capabilities.About the Authors:Will Ballard is the chief technology officer at GLG, responsible for engineering and IT. He was also responsible for the design and operation of large data centres that helped run site services for customers including Gannett, Hearst Magazines, NFL, NPR, The Washington Post, and Whole Foods. He has also held leadership roles in software development at NetSolve (now Cisco), NetSpend, and Works (now Bank of America).Jibin Mathew is a Tech-Entrepreneur, Artificial Intelligence enthusiast and an active researcher. He has spent several years as a Software Solutions Architect, with a focus on Artificial Intelligence for the past 5 years. He has architected and built various solutions in Artificial Intelligence which includes solutions in Computer Vision, Natural Language Processing/Understanding and Data sciences, pushing the limits of computational performance and model accuracies. He is well versed with concepts in Machine learning and Deep learning and serves as a consultant for clients from Retail, Environment, Finance and Health care.
Udemy helps organizations of all kinds prepare for the ever-evolving future of work. Our curated collection of top-rated business and technical courses gives companies, governments, and nonprofits the power to develop in-house expertise and satisfy employees’ hunger for learning and development.
Learn on your schedule with Udemy
Investing in yourself through Learning
As a society, we spend hundreds of billions of dollars measuring the return on our financial assets. Yet, at the same time, we still haven’t found convincing ways of measuring the return on our investments in developing people.
And I get it: If my bank account pays me 1% a year, I can measure it to the penny. We’ve been collectively trained to expect neat and precise ROI calculations on everything, so when it’s applied to something as seemingly squishy as how effectively people are learning in the workplace, the natural inclination is to throw up our hands and say it can’t be done. But we need to figure this out. In a world where skills beat capital, the winners and losers of the next 30 years will be determined by their ability to attract and develop great talent.
Fortunately, corporate learning & development (L&D), like most business functions, is evolving quickly. We can embrace some level of ambiguity and have rigor when measuring the ROI of learning. It just might look a little different than an M.B.A. would expect to see in an Excel model.
Reviews
There are no reviews yet.